Tugas PTI - Mengenal apa itu Fuzzy Logic


Assalamualaikum Wr.Wb
Apa kabar sahabat??  Semoga selalu dalam lindungan Allah ya.. Aminn
Pada kesempatan ini, saya akan share nih tentang Fuzzy Logic...

simak ya .. semoga bermanfaat ^^
 
                                                  Hasil gambar untuk logo fuzzy logic

PENGERTIAN LOGIKA FUZZY
Logika fuzzy adalah metodologi pemecahan masalah dengan beribu – ribu aplikasi dalam pengendali yang tersimpan dan pemrosesan informasi. Fuzzy Logic menyediakan cara sederhana untuk menggambarkan kesimpulan pasti dari informasi yang ambigu, samar – samar, atau tidak tepat. Sedikit banyak, fuzzy logic menyerupai pembuatan keputusan pada manusia dengan kemampuannya untuk bekerja dari data yang ditafsirkan dan mencari solusi yang tepat.
Fuzzy logic pada dasarnya merupakan logika bernilai banyak (multivalued logic) yang dapat mendefinisikan nilai diantara keadaan konvensional seperti ya atau tidak, benar atau salah, hitam atau putih, dan sebagainya. Penalaran fuzzy menyediakan cara untuk memahami kinerja dari sistem dengan cara menilai input dan output sistem dari hasil pengamatan.
Secara umum, fuzzy logic adalah sebuah metodologi "berhitung" dengan variabel kata-kata (linguistic variable), sebagai pengganti berhitung dengan bilangan. Kata-kata yang digunakan dalam fuzzy logic memang tidak sepresisi bilangan, akan tetapi lebih familiar dengan intuisi manusia. Manusia bisa langsung "merasakan" nilai dari variabel kata-kata yang biasa dipakai dalam kehidupan sehari-hari

PENGGUNAAN LOGIKA FUZZY
Beberapa tahapan yang dilakukan dalam penggunaan fuzzy logic adalah sebagai berikut :
1.    Pertama-tama kita harus didefinisikan obyektif dan criteria control :
Ø  Apa yang kita coba control ?
Ø  Apa yang harus kita lakukan untuk mengontrol system ?
Ø  Respon seperti apa yang kita butuhkan ?
Ø  Apa mode kegagalan system yang mungkin ?
2.    Tentukan hubungan antara input dan output serta memilih jumlah minimum variable input pada mesin fuzzy logic(secara khusus error dan rata – rata perubahan error).

3.    Dengan menggunakan struktur berbasis aturan dari fuzzy logic, jabarkan permasalahan control ke dalam aturan IF X AND Y THEN Z yang mendefinisikan respon output system yang diinginkan untuk kondisi input system yang diberikan. Jumlah dan kompleksitas dari rules bergantung pada jumlah parameter input yang diproses dan jumlah variable fuzzy yang bekerjasama dengan tiap – tiap parameter. Jika mungkin, gunakan setidaknya satu variable dan turunan waktunya. Walaupun mungkin untuk menggunakan sebuah parameter tunggal yang error saat itu juga tanpa mengetahui rata – rata perubahannya, hal ini melumpuhkan kemampuan system untuk meminamalisasi keterlampauan untuk sebuah tingkat input.

4.    Buat fungsi keanggotaan yang menjelaskan nilai input atau output yang digunakan didalam rules.

5.    Buat rutinitas proses awal dan akhir yang penting jika diimplementasikan dalam software, sebaliknya program rules kedalam mesin hardware fuzzy logic.

6.    Test system, evaluasi hasil, atur rules dan fungsi keanggotaan, dan re-test sampai hasil yang memuaskan.



Alasan Digunakannya Logika Fuzzy :
Ada beberapa alasan mengapa orang menggunakan logika fuzzy, antara lain:
1.      Logika fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks.
2.      Konsep logika fuzzy mudah dimengerti. Konsep matematis yang mendasari penalaran fuzzy sangat sederhana dan mudah dimengerti.
3.      Logika fuzzy sangat fleksibel.
4.      Logika fuzzy memiliki toleransi terhadap data-data yang tidak tepat.
5.      Logika fuzzy dapat membangun dan mengaplikasikan pengalaman-pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan.
6.      Logika fuzzy dapat bekerjasama dengan teknik-teknik kendali secara konvensional.
7.      Logika fuzzy didasarkan pada bahasa alami.

 IMPLEMENTASI LOGIKA FUZZY
Pada masa sekarang ini kita dapat melihat berbagai penerapan Fuzzy Logic pada alat-alat dan mesin yang digunakan dalam kehidupan sehari-sehari manusia. Dengan digunakannya fuzzy logic dalam prinsip kerja alat-alat dan mesin penunjang pekerjaan manusia tersebut membuat waktu, biaya, tenaga menjadi lebih efektif dan efisien sehingga juga meningkatkan tingkat produktifitas pekerjaan yang dilakukan manusia.
Dengan fuzzy logic, sistem kepakaran manusia bisa diimplementasikan ke dalam bahasa mesin secara mudah dan efisien. Bahasa presisi yang diperlukan mesin sulit "dirasakan" oleh manusia. Sebaliknya, variabel kata-kata bisa lebih singkat, simpel, dan langsung dapat "dirasakan" manusia, namun kurang presisi dari sudut pandang bahasa mesin. Disinilah peran sistem fuzzy, yaitu untuk menjembatani komunikasi sehingga menjadi lebih efektif dan efisien antara mesin dan manusia. Dengan kata lain, sistem fuzzy adalah mesin penerjemah bahasa manusia agar bisa dimengerti oleh mesin dan juga sebaliknya.
Banyak mesin kebutuhan sehari-hari manusia yang sudah menggunakan teknologi fuzzy, seperti AC, Vacum cleaner, Camcorder, rice cooker, mesin cuci, dan lain sebagainya
Berikut ini adalah beberapa bentuk implementasi fuzzy logic dalam berbagai bidang di kehidupan sehari-hari manusia :
·         Air Conditioner (Mitsubishi)
AC Mitsubishi menggunakan fuzzy logic dalam system control-nya seperti berikut:
“Jika suhu udara semakin hangat, daya pendinginan naik sedikit, jika udara semakin dingin, matikan daya ke bawah.”

Beberapa keuntungan yang diperoleh adalah sebagai berikut :
Mesin menjadi halus sehingga tidak cepat rusak, suhu kamar yang nyaman menjadi lebih konsisten dan peningkatan efisiensi (penghematan energi).

·         Vacuum Cleaner (Panasonic)
Prinsip kerja Vacuum Cleaner yang diproduksi oleh Panasonic adalah sebagai berikut :
“Karakteristik lantai dan jumlah debu yang dibaca oleh sensor inframerah dan mikroprosesor akan memilih daya yang sesuai dengan kontrol fuzzy berdasarkan karakteristik lantai.”

Karakteristik lantai meliputi jenis (kayu, semen, ubin, kelembutan karpet, karpet tebal, dll).
Pola perubahan jumlah debu yang melewati sensor inframerah dapat dideteksi. Mikroprosesor menetapkan pengaturan yang sesuai dengan vakum dan daya motor menggunakan skema kontrol fuzzy. Lampu merah dan hijau dari penyedot debu menunjukkan jumlah debu tersisa di lantai.



·         Camcorder (Panasonic, Sanyo, Fisher, Canon)
Kamera Video menentukan fokus dan pencahayaan terbaik, terutama ketika beberapa objek dalam gambar. Juga memiliki image stabilizer untuk mengatasi tangan yang bergetar. Fuzzy Logic digunakan untuk image stabilizer pada kamera video.

Cara kerjanya adalah sebagai berikut :
Bingkai gambar saat ini dibandingkan dengan frame sebelumnya dari memori. Sebuah objek biasanya stasioner (misalnya, rumah) diidentifikasi dan pergeseran koordinat dihitung.
Pergeseran ini dikurangi dari gambar untuk mengimbangi pergerakan tangan. Sebuah algoritma fuzzy memberikan kontrol mulus / tindakan kompensasi.
Beberapa hal dalam memahami sistem fuzzy yaitu :
1.      Variabel fuzzy
Variabel  fuzzy merupakan variabel yang akan dibahas dalam suatu sistem fuzzy. Contoh variabel  fuzzy yaitu umur, temperatur, dan sebagainya.

2.      Himpunan fuzzy
Himpunan fuzzy merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy. Jika pada himpunan crisp nilai keanggotaannya hanya ada dua kemungkinan, yaitu 0 atau 1, pada himpunan fuzzy nilai keanggotaan terletak pada rentang 0 sampai 1. Terkadang kemiripan antara keanggotaan fuzzy dengan probabilitas menimbulkan kerancuan. Akan tetapi sesungguhnya keduanya memiliki intepretasi yang berbeda.
Keanggotaan fuzzy memberikan suatu ukuran terhadap pendapat atau keputusan, sedangkan probabilitas mengidikasikan proporsi terhadap keseringan suatu hasil bernilai benar dalam jangka panjang. Terdapat dua atribut dalam himpunan fuzzy, yaitu linguistik dan numerik. Linguistik merupakan penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami. Numeris yaitu suatu angka yang menunjukkan ukuran dari suatu variabel.
Fungsi keanggotaan (membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai keanggotaannya yang memiliki interval antara 0 sampai 1. Salah satu cara yang dapat digunakan untuk mendapatkan nilai keanggotaan adalah dengan melalui pendekatan fungsi. Ada beberapa fungsi yang dapat digunakan (Kusumadewi & Hari, 2004) : 1)  Representasi linier, 2) Representasi kurva segitiga, 3) Representasi kurva trapesium, 4)  Representasi kurva bentuk bahu, 5) Representasi kurva-S, 6) Representasi kurva bentuk lonceng.

3.      Semesta pembicaraan
Semesta pembicaraan merupakan keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy. Semesta pembicaraan merupakan himpunan bilangan real yang senantiasa naik secara monoton dari kiri ke kanan. Nilai semesta pembicaraan dapat berupa bilangan positif maupun negatif.

4.      Domain
Domain merupakan keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy. Domain merupakan himpunan bilangan real yang senantiasa naik secara monoton dari kiri ke kanan. Nilai domain dapat berupa bilangan positif maupun negatif.

 HIMPUNAN FUZZY
Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam suatu himpunan A, yang sering ditulis dengan (X), memiliki dua kemungkinan, yaitu: Satu (1), yang berarti bahwa suatu item menjadi anggota dalam suatu himpunan, dan Nol (0), yang berarti bahwa suatu item tidak menjadi anggota dalam suatu himpunan.

Komentar

Postingan populer dari blog ini